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The existence of an exact solution for axial propagation in a dielectric cholesteric 
medium has been often remarked upon. Here, we obtain the exact solution for axial 
propagation in a magnetic-dielectric cholesteric medium, using the 4 x 4 matrix 
method of optics. Our solution procedure also enables us to identify the specific 
features that make axial propagation in cholesteric media remarkable in having an 
analytical solution. 

1. Introduction 
Whereas planewave propagation in uniaxial dielectric materials has been inten- 

sively studied for well over three half-centuries [ 1-41, general exact analytical solutions 
for planewave propagation in cholesteric liquid crystals still remain elusive. This may 
be because cholesteric liquid crystals are periodically inhomogeneous uniaxial 
dielectric materials, and exact solutions for linear differential equations with periodic 
coefficients are rather rare [5-7). 

It is possible to make the piecewise constant approximation [8, 91 of replacing a 
cholesteric slab by a multilayered uniaxial dielectric slab, and a simplified version of the 
resulting algorithm has been numerically implemented [lo, 1 11. Perturbative [12], 
long wavelength or quasistatic [9,13], and the geometrical optics [14,15] approxi- 
mations have also been used for a cholesteric medium of infinite extent, and note may 
also be taken of the numerical implementation [16] of the Floquet-Lyapunov theorem 
1161. However, as Belyakov [ 5 ]  has so eloquently put it, an exact, closed form solution 
has been found only for propagation parallel to the helical axis [17,18]. This 
assessment holds true in spite of some analytical advances reported in the past 10 years: 
Oldano et al. [19] have expanded the electric field in terms of its Floquet-Bloch 
planewave spectrum but their numerical procedure has to be carefully checked for 
convergence; Peterson 1201 has utilized a cylindrical wave spectrum instead, but his 
solution involves a matrix continued fraction and also requires the numerical solution 
of a high order polynomial equation; Kapshai et al. [21] are closer to a closed form 
solution, but have only been able to give approximate expressions for the eigenfields. 

The existence of an exact solution for axial propagation in a cholesteric medium is 
so remarkable that it is worth quoting Belyakov [S]: ‘The obtained exact solution is 
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simple and is the only example of a simple exact analytical solution of the Maxwell 
equations for periodic media. No other simple exact solution is known-not even for 
periodic structures more simple than cholesterics . . .’. Belyakov’s comments naturally 
lead to a question: What are the essential features of this problem? The mode of 
presenting its solution in textbooks (for instance, Belyakov [S], de Gennes [22] or 
Chandrasekhar [23]) does not illuminate the uniqueness of its existence. This may be 
because, conventionally, resort is made to second order differential equations that often 
obscure some special features of the first order differential equations of Maxwell. True, 
Berreman and Scheffer [lo, 113 did use the first order equations, but only together with 
the piecewise constant approximation. 

A general material can have dielectric as well as magnetic properties [24,25], so 
whatever has been written above for dielectric cholesteric media applies in full force to 
magnetic cholesteric media [26,27] as well. A magnetic cholesteric (ferrocholesteric) 
medium can be made by suspending acicular magnetic particles in a carrier liquid 
crystal and then cooling under/without a magnetic field pulse to establish long range 
orientational order for the magnetic needles [26,28]. Continual advances being 
reported on the fabrication of these types of materials prompt the second question: Is 
the exact, closed form solution for axial propagation in a dielectric cholesteric medium 
a reduction of another exact, closed form solution for axial propagation in a magnetic- 
dielectric cholesteric medium? 

The present communication is being made to answer these two questions. Using the 
famous 4 x 4 matrix method of optics [7,9, lo], we obtain the exact solution for axial 
propagation in a magnetic-dielectric cholesteric medium. In doing so, we find out the 
answers to the two questions hitherto posed. 

At the risk of appearing repetitive, let us pause to enumerate the reasons for the 
existence of this paper. First, the publications of de Vries [17] and Kats [18] for axial 
propagation in a dielectric cholesteric medium were the first in which the time- 
harmonic Maxwell equations were solved in a periodically inhomogeneous medium; 
any extension thereof is of analytical value, and even more so when the extension has 
not been reported elsewhere. Second, we have very clearly obtained in §4  the reasons 
why the deVries-Kats approach works, which has not been done elsewhere to our 
knowledge; that fact endows our paper with pedagogical value. Third, though the 
anisotropy of the diamagnetic susceptibility of liquid crystals is usually very small, this 
can be enhanced in the manner proposed by Brochard and de Gennes [26] by 
suspending acicular magnetic particles in dielectric cholesterics. Such materials can 
nowadays be made, albeit with considerable difficulty [27]. 

2. Field equations 
Frequency-domain electromagnetic fields, in the magnetic-dielectric cholesteric 

material we are handling here, obey the constitutive relations 

D(r)=e(z). E(r), (1 4 
B( r) = m(z) * H( r), (1 b) 

where e(z) is the permittivity dyadic and m(z) is the permeability dyadic. The 
permittivity dyadic is specified as 
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Axial propugation in cholesterics 66 1 

where 3 = u,u, + u p y  + u,u, is the identity dyadic and (u,, u,, u,) is the triad of Cartesian 
unit vectors; E~ = 8.854 x 10- l 2  F m- is the permittivity of free space, and ( E ~ ,  ch, E,) is 
the triad of relative permittivities; while in specifying the dielectric director 

u,(z) = u, cos de(z) + u, sin de(z) (2 b) 

that spins around the z axis, the axis of spirality in the material, we make no particular 
assumptions regarding the dependence of the angle $e(z) on z at this stage. The 
permeability dyadic is set up as 

m(z) = PoCPa3 + ( ~ b  - Pa)um(z)um(z) + ( ~ c  - ~JuzuzI ,  (3 4 
where p o  = 4n x lo-’ H m- is the permeability of free space, (pa, pb, p c )  is the triad of 
relative permeabilities, and the angle 4m(z) of the magnetic director 

u,(z) = u, cos &(z) + uy sin &,(z) (3 b) 

has an arbitrary dependence on z at this juncture. 
We are interested solely in axial propagation. Therefore, ajax = ajay = 0 and the 

field vectors depend on the z coordinate only; hence, E(r) = E(z), etc. Substitution of the 
preceding equations in the time-harmonic Maxwell curl equations, V x E = iwB and 
V x H = - iwD, yields us the two algebraic relations 0 = u, * B(z) and 0 = u, * D(z). This 
implies that the B and the D fields are purely transverse for axial propagation, as also 
are the E and the H fields. 

In addition to the two algebraic equations, we also get four first order differential 
equations that can be put in matrix form as 

where [f(z)] is the column vector 

and [A(z)] is the 4 x 4 matrix 

[A(z)] = i o  
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3. Field transformation 
It is conventional to think of left- and right-handed circularly polarized fields for 

axial propagation in a dielectric cholesteric [20,22]). In addition, we know that e(z) and 
m(z) are periodic functions of z; indeed, the factorizations 

converts the electromagnetic fields from the linearly to the circularly polarized bases, 
while the matrix 

0 O 1  0 

is purely diagonal. 
It follows from (7a) that 

Hence, the matrix differential equation (4 a) can be transformed to 

where 

with 
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4. A conditional solution 
The transformed field equation (9 a )  involves the matrix [C(z)] of (9 b). The structure 

of [C(z)] is the key of the present investigation. It turns out that 

CC(z)l= 

id4,/dz 0 - @pop + exp [ - id(z)] - o p o p  - exp [ - id(z)]. 

0 - id4,/dz W O P  - exp C i W l  UPOP + exp C i W l  
OE,E+ exp [id(z)] WE,E- exp [id(z)] id4,ldz 0 

- UE,E ~ exp [ - id(z)] - OE,E + exp [ - id(z)] 0 -id4,/dz . 

(10) 

(1 1) 

with 

d(z) = 4m(z) - 4e(z). 
If [C(z)] can be made independent of z ,  the solution of (9 a) is quite straightforward. 

To make [C(z)] constant with respect to z introduces the following requirements: 

(i) d+,/dz = be. (12 a) 

(ii) d$,/dz = b,. 

(iii) 6(z) = do, 

where be, b, and 6, are constants. If these three conditions are met, (9 a) reduces to the 
matrix differential equation 

(dldz)Cy(z)l= CCOl CY(Z) l  (13 a) 

that has the constant matrix 

CC,l= 

- wpop + exp ( - id,) - cup,p- exp (- id,) I ib, 0 

0 - ib, W O P  - exp (id,) WPOP + exp (id,) 
BE,C + exp (id,) WE,& - exp (id,) ib, 0 

- WE,& - exp ( - id,) - WE,& + exp ( - id,) 

for its kernel. The solution of (13a) can then be obtained as [29] 

0 - ib, 
(13 b) 

whence the simple result 

" 1  = c ~ I c m ) l  exp {CCOl(Z - z ' ) I [ W ) l -  "PI - l C f V ) I .  (13 d )  

The matrix exp([C,](z-2')) can be simplified using the eigenvalues and the 
eigenvectors of [C,]. We note that the eigenvalue equation for the [C,]  of (13 b) is a 
quartic and is best handled numerically, even though the cubic' term is missing 
therefrom. 

The above procedure makes it clear why an analytical solution for axial 
propagation in a dielectric cholesteric medium can be found. If 2R is the pitch of the 
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664 A. Lakhtakia and W. S .  Weiglhofer 

cholesteric, we have $ e ( ~ )  = &(z) = nz/Q and pb = pa. Ergo, be = b, = n/Q and 6, =O; 
and all three conditions (1 2 a, b, c) are fulfilled. The matrix [C(z)] thus becomes 
independent of z and an exact solution of the form (13 b) becomes attainable. 

5. Magnetic-dielectric cholesteric medium 
We may now proceed with the application of the results of the previous section for 

axial propagation in the magnetic-dielectric cholesteric medium described in 5 2. We 
use 

4e(z) = nz/Q, (144  

$m(Z) = nz/Q + 60, (14 b) 
to obtain 

[C,l= 

in/Q 0 -mpop+ exp(-i6,) - u p , p -  exp(-i6,)’ 

0 - in/Q W O P  - exp (id,) WPoP + exp (i60) 

WE,&+ exp(id,) OE,E - exp (id,) in/Q 0 
- WE,& - exp ( - id,) 

This matrix is diagonalizable in the form 

- OE,E + exp ( - is,) 0 - ix/Q 

(14 4 

~ ~ , l = C ~ l ~ G I C ~ I - l ,  (15 4 
where the diagonal matrix 

contains the four eigenvalues gn, n = 14, of [C,]. The successive columns of the matrix 

t21 t22  t23 t24  

t31  t 3 2  t 3 3  t 3 4  
[TI = 

are the corresponding eigenvectors of [C,]. The quantities - ig, can be interpreted as 
wavenumbers. 

The eigenvalues of the matrix [C,] of (14 c) are obtained by setting the determinant 
of the matrix ([C,] -g[I]) equal to zero, where [Z] is the identity matrix. That process 
yields the biquadratic equation 

(g2 + n2/f12)2 + a(g2 + 7?/Q2) + /3 = 0, 
where 
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Axial propagation in cholesterics 665 

and ko=coJ(pOEO) is the free space wavenumber. It follows from (16a) that the four 
eigenvalues are 

where 

1, = -(ct/2)_+(1/2)J(ct2-4P). (17 e )  
That we obtain g3 = -gl and g4 = -g2 is reassuring, because the magnetic-dielectric 
cholesteric material under investigation is reciprocal as its e(z) and m(z) are symmetric 
dyadics [30]. 

The elements of the nth eigenvector are, quite simply, given in an unnormalized 
form as 

(18 4 
(18 b) 

(18 c) 

t , ,  = -wpo[p-(g,’ +x2/Q’)+exp(2Z6,)k~&_(p(: --p?)], 

to2 =w~Oex~(2i60)  Cp+(gn--n/Q)2 + k i % + ( ~ $  - P ~ ) I ,  

tn4 =exp (iS,)C(d + n2/Q2)(gn -in/Q) +ki%n + i n / o ) ~ + ~ + I  

t,, = - k i  exp (iho)(gn + ix/Q)p-E + + kz exp (3ihO)(g,- in/Q)p+&-, 

- k~exp(3i6,)(gn-i.n/R)p-&-. (18 4 

e x P ~ C ~ o l ( z - z ’ ) ~ = C ~ l  exP“I(z-z‘))CTl-’ (19) 

Cf(z)l= CX(Z)l exp {CCI(z -Z’))CX(Z’)I - ‘Cf(Z’)I, (20) 

As 

in view of (1 5 a), axial progagation takes place as described by the relation 

wherein we have introduced the matrix 

Equivalently, after setting z’=O without loss of generality, we can cast the solution in 
the form 

where the coefficient vector 

The solution given as (22 a) is not in a form compatible with the Floquet-Lyapunov 
theorem [6,9,12], but a slightly modified form is. To obtain the latter form, let us define 
the matrix 

and transform (20) to 
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where 

A. Lakhtakia and W. S. Weiglhofer 

L o  0 0 

Then, setting z’=O again, we can recast (24) into 

Cf(z)l= CY(Z)l exp l ~ ~ ~ l Z ~ ~ . f O O l ~  

[fool = EY(0)I - “f(0)l. 

where the coefficient vector 

O 1  

iY4 + ZlQ 1 

Because [ Y(z +Q)] = [ Y(z)] and [ K ]  is independent of z, the solution (26 a) is in the 
form required by the Floquet-Lyapunov theorem. 

The spirality of the medium vanishes in the limit Q+m, hence the inhomogeneity 
also. This provides us with a means to test the derivations made in this section, for 
which purpose we looked at  the gyroelectromagnetic uniaxial medium [25,31] by 
taking the limit SZ+m along with 6, =O. The medium under investigation here thereby 
became homogeneous, and we found that the solution (21 a) reduced to published 
results [32] for axial propagation in the gyroelectromagnetic uniaxial medium. 

6. Final remarks 
We have thus obtained an analytical solution for axial propagation in a magnetic- 

dielectric cholesteric or ferrocholesteric medium. This medium is more general than the 
usual dielectric cholesteric medium. Therefore, we have shown that the exact, closed 
form solution for axial propagation in a dielectric cholesteric medium is a reduction of 
another exact, closed form solution for axial propagation in a magnetic-dielectric 
cholesteric medium. 

The features that allowed this exact solution are the following: 

(i) The electromagnetic fields as well as the permittivity and the permeability 
dyadics vary only with the propagation direction. 

(ii) The inhomogeneity is purely rotational, as demonstrated by (6a,b),  and 
transverse to the propagation direction. 

(iii) The effective anisotropy of the medium is purely transverse to the propagation 
direction, the (non-zero) values of u;e(z).u,( = E , E ~ )  and u;m(z)~u,(p,p0) 
being inconsequential for the present problem. 

(iv) The angles 4Jz) and 4,,,(z) vary linearly with the propagation direction, the 
difference between the two being a constant. 

Our original question, as to what the special features are that permit an analytical 
solution, has therefore been answered; and we note that the answer is in a more general 
setting than the question. To conclude, we add that the understanding obtained here by 
us has been of assistance in obtaining exact and simple solutions for propagation in 
general helicoidal media [33]. 

W.S.W. is grateful to the Nufield Foundation for providing a travel grant 
(SCI/180/92/77/G). 
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